Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.

Identifieur interne : 000074 ( Main/Exploration ); précédent : 000073; suivant : 000075

The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.

Auteurs : Suyun Wei [République populaire de Chine] ; Yonghua Yang [République populaire de Chine] ; Tongming Yin [République populaire de Chine]

Source :

RBID : pubmed:32257231

Abstract

Salix suchowensis is an early-flowering shrub willow that provides a desirable system for studies on the basic biology of woody plants. The current reference genome of S. suchowensis was assembled with 454 sequencing reads. Here, we report a chromosome-scale assembly of S. suchowensis generated by combining PacBio sequencing with Hi-C technologies. The obtained genome assemblies covered a total length of 356 Mb. The contig N50 of these assemblies was 263,908 bp, which was ~65-fold higher than that reported previously. The contiguity and completeness of the genome were significantly improved. By applying Hi-C data, 339.67 Mb (95.29%) of the assembled sequences were allocated to the 19 chromosomes of haploid willow. With the chromosome-scale assembly, we revealed a series of major chromosomal fissions and fusions that explain the genome divergence between the sister genera of Salix and Populus. The more complete and accurate willow reference genome obtained in this study provides a fundamental resource for studying many genetic and genomic characteristics of woody plants.

DOI: 10.1038/s41438-020-0268-6
PubMed: 32257231
PubMed Central: PMC7109076


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.</title>
<author>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>2College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>2College of Information Science and Technology, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yonghua" sort="Yang, Yonghua" uniqKey="Yang Y" first="Yonghua" last="Yang">Yonghua Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>3College of Life Sciences, Nanjing University, Nanjing, 210093 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>3College of Life Sciences, Nanjing University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32257231</idno>
<idno type="pmid">32257231</idno>
<idno type="doi">10.1038/s41438-020-0268-6</idno>
<idno type="pmc">PMC7109076</idno>
<idno type="wicri:Area/Main/Corpus">000360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000360</idno>
<idno type="wicri:Area/Main/Curation">000360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000360</idno>
<idno type="wicri:Area/Main/Exploration">000360</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.</title>
<author>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>2College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>2College of Information Science and Technology, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yonghua" sort="Yang, Yonghua" uniqKey="Yang Y" first="Yonghua" last="Yang">Yonghua Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>3College of Life Sciences, Nanjing University, Nanjing, 210093 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>3College of Life Sciences, Nanjing University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Horticulture research</title>
<idno type="ISSN">2052-7276</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Salix suchowensis</i>
is an early-flowering shrub willow that provides a desirable system for studies on the basic biology of woody plants. The current reference genome of
<i>S. suchowensis</i>
was assembled with 454 sequencing reads. Here, we report a chromosome-scale assembly of
<i>S. suchowensis</i>
generated by combining PacBio sequencing with Hi-C technologies. The obtained genome assemblies covered a total length of 356 Mb. The contig N50 of these assemblies was 263,908 bp, which was ~65-fold higher than that reported previously. The contiguity and completeness of the genome were significantly improved. By applying Hi-C data, 339.67 Mb (95.29%) of the assembled sequences were allocated to the 19 chromosomes of haploid willow. With the chromosome-scale assembly, we revealed a series of major chromosomal fissions and fusions that explain the genome divergence between the sister genera of
<i>Salix</i>
and
<i>Populus</i>
. The more complete and accurate willow reference genome obtained in this study provides a fundamental resource for studying many genetic and genomic characteristics of woody plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32257231</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2052-7276</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Horticulture research</Title>
<ISOAbbreviation>Hortic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41438-020-0268-6</ELocationID>
<Abstract>
<AbstractText>
<i>Salix suchowensis</i>
is an early-flowering shrub willow that provides a desirable system for studies on the basic biology of woody plants. The current reference genome of
<i>S. suchowensis</i>
was assembled with 454 sequencing reads. Here, we report a chromosome-scale assembly of
<i>S. suchowensis</i>
generated by combining PacBio sequencing with Hi-C technologies. The obtained genome assemblies covered a total length of 356 Mb. The contig N50 of these assemblies was 263,908 bp, which was ~65-fold higher than that reported previously. The contiguity and completeness of the genome were significantly improved. By applying Hi-C data, 339.67 Mb (95.29%) of the assembled sequences were allocated to the 19 chromosomes of haploid willow. With the chromosome-scale assembly, we revealed a series of major chromosomal fissions and fusions that explain the genome divergence between the sister genera of
<i>Salix</i>
and
<i>Populus</i>
. The more complete and accurate willow reference genome obtained in this study provides a fundamental resource for studying many genetic and genomic characteristics of woody plants.</AbstractText>
<CopyrightInformation>© The Author(s) 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Suyun</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-3262-2771</Identifier>
<AffiliationInfo>
<Affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>2College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yonghua</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-8647-1158</Identifier>
<AffiliationInfo>
<Affiliation>3College of Life Sciences, Nanjing University, Nanjing, 210093 China.</Affiliation>
<Identifier Source="ISNI">0000 0001 2314 964X</Identifier>
<Identifier Source="GRID">grid.41156.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>1Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Hortic Res</MedlineTA>
<NlmUniqueID>101655540</NlmUniqueID>
<ISSNLinking>2052-7276</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA sequencing</Keyword>
<Keyword MajorTopicYN="N">Next-generation sequencing</Keyword>
</KeywordList>
<CoiStatement>Conflict of interestThe authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32257231</ArticleId>
<ArticleId IdType="doi">10.1038/s41438-020-0268-6</ArticleId>
<ArticleId IdType="pii">268</ArticleId>
<ArticleId IdType="pmc">PMC7109076</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Jan;3(1):17-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2019 Apr 6;6:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):722-736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28298431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Dec 28;7:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19023044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Feb 23;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Aug 15;5:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30131865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Oct 15;30(20):2843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Feb 7;5:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29423238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 May 19;44(9):e89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26893356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 22;546(7659):524-527</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28605751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2012 May;16(5):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1071-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Mar 1;25(5):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 13;43(12):e78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25870408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jun 27;8(6):1868-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Jan 26;14(1):e1005944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29373581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Sep 19;13:238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22988817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Feb;17(2):451-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Dec;31(12):1119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008 Jan 11;9(1):R7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18190707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2017 Sep 1;6(9):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28938721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2019 May;62(5):609-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30661181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Dec 01;16:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26619908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Aug 06;16:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Nov 15;29(22):2933-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24008419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 15;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
</noRegion>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<name sortKey="Yang, Yonghua" sort="Yang, Yonghua" uniqKey="Yang Y" first="Yonghua" last="Yang">Yonghua Yang</name>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000074 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000074 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32257231
   |texte=   The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32257231" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020